SOT-23-3 PinConfiguration | BVDSS | RDSON | ID | |-------|-------|------| | 60V | 75mΩ | 3.2A | ### Features - 60V,3.2A, $RDS(ON) = 75m\Omega@VGS = 10V$ - Improved dv/dt capability - Fast switching - 100% EAS Guaranteed - Green Device Available ### **Applications** - Motor Drive - Power Tools - LED Lighting ### **MAXIMUM RATINGS AND CHARACTERISTICS** ### @ 25°C Ambient Temperature (unless otherwise noted) | Parameter | Symbol | Rating | Units | |--|------------------|------------|-------| | Drain-Source Voltage | V _{DS} | 60 | V | | Gate-Source Voltage | V_{GS} | ±20 | V | | Drain Current – Continuous (T _C =25°C) | 1_ | 3.2 | А | | Drain Current – Continuous (T _C =100°C) | l _D | 2 | Α | | Drain Current – Pulsed ¹ | I _{DM} | 12.8 | А | | Power Dissipation (T _C =25°C) | 1.56 | | W | | Power Dissipation – Derate above 25°C | P _D | 0.012 | W/°C | | Storage Temperature Range | T _{STG} | -50 to 150 | °C | | Operating Junction Temperature Range | TJ | -50 to 150 | °C | #### **Thermal Characteristics** | Parameter | Symbol | Тур. | Max. | Unit | |--|-----------------|------|------|------| | Thermal Resistance Junction to ambient | $R_{\theta JA}$ | | 80 | °C/W | ## 60VN-ChannelMOSFETS ## **LDN6912S** ### MOSFETELECTRICAL CHARACTERISTICS T_A=25c unless otherwise specified ### **Off Characteristics** | Parameter | Symbol | ymbol Conditions | | Тур. | Max. | Unit | |---|---|---|----|------|------|------| | Drain-Source Breakdown Voltage | BV _{DSS} V _{GS} =0V , I _D =250uA | | 60 | | | V | | BV _{DSS} Temperature Coefficient | △BV _{DSS} /△T _J | △BV _{DSS} /△T _J Reference to 25°C , I _D =1mA | | 0.05 | | V/°C | | Dunin Course Legland Commant | | V _{DS} =60V , V _{GS} =0V , T _J =25°C | | | 1 | uA | | Drain-Source Leakage Current | I _{DSS} | V _{DS} =48V , V _{GS} =0V , T _J =125°C | | | 10 | uA | | Gate-Source Leakage Current | I _{GSS} | V_{GS} =±20V , V_{DS} =0V | | | ±100 | nA | ### **On Characteristics** | Static Drain-Source On-Resistance | В | V _{GS} =10V , I _D =6A | | 60 | 75 | mΩ | |---|------------------------|--|-----|-----|-----|-------| | Static Drain-Source On-Resistance | R _{DS(ON)} | V _{GS} =4.5V , I _D =3A | | 70 | 90 | mΩ | | Gate Threshold Voltage | $V_{GS(th)}$ | \/=\/ | 1.2 | 1.8 | 2.5 | V | | V _{GS(th)} Temperature Coefficient | $\triangle V_{GS(th)}$ | $V_{GS}=V_{DS}$, I_D =250uA | | -5 | | mV/°C | | Forward Transconductance | gfs | V _{DS} =10V , I _D =3A | | 7 | | S | ### **Dynamic and switching Characteristics** | Total Gate Charge ^{2, 3} | Qg | |
9.3 | 14 | | |--------------------------------------|------------------|--|----------|-----|----| | Gate-Source Charge ^{2, 3} | Q _{gs} | V _{DS} =48V , V _{GS} =10V , I _D =6A |
2.1 | 4 | nC | | Gate-Drain Charge ^{2, 3} | Q_gd | 1 |
1.8 | 4 | | | Turn-On Delay Time ^{2, 3} | $T_{d(on)}$ | |
2.9 | 6 | | | Rise Time ^{2,3} | Tr | V_{DD} =30V , V_{GS} =10V , |
9.5 | 18 | | | Turn-Off Delay Time ^{2 , 3} | $T_{d(off)}$ | R _G =3.3Ω I _D =1A |
18.4 | 35 | ns | | Fall Time ^{2,3} | T _f |] |
5.3 | 10 | | | Input Capacitance | C _{iss} | |
500 | 725 | | | Output Capacitance | C _{oss} | V_{DS} =15V , V_{GS} =0V , F=1MHz |
45 | 65 | pF | | Reverse Transfer Capacitance | C _{rss} | |
16 | 30 | | | Gate resistance | Rg | V _{GS} =0V, V _{DS} =0V, F=1MHz |
2 | 4 | Ω | ### **Drain-Source Diode Characteristics and Maximum Ratings** | Parameter | Symbol Conditions | | Min. | Тур. | Max. | Unit | |--------------------------------------|-------------------|---|------|------|------|------| | Continuous Source Current | Is | \/-=\/-=0\/ | | | 3.2 | Α | | Pulsed Source Current | I _{SM} | V _G =V _D =0V , Force Current | | | 6.4 | Α | | Diode Forward Voltage | V _{SD} | V _{GS} =0V , I _S =1A , T _J =25°C | | | 1 | V | | Reverse Recovery Time ² | t _{rr} | V _G s=30V,I _S =1A , dI/dt=100A/ μs | | 23.2 | | ns | | Reverse Recovery Charge ² | Q _{rr} | T _J =25°C | | 14.3 | | nC | #### Note: - 1. Repetitive Rating: Pulsed width limited by maximum junction temperature. - 2. The data tested by pulsed , pulse width \leq 300us , duty cycle \leq 2%. - 3. Essentially independent of operating temperature. http://www.lujingsemi.com 2017.6-Rev.A Fig.1 Continuous Drain Current vs. T_c Fig.3 Normalized V_{th} vs. T_J Fig.5 Normalized Transient Response Fig.2 Normalized RDSON vs. T_J Fig.4 Gate Charge Waveform Fig.6 Maximum Safe Operation Area Fig.7 Switching Time Waveform Fig.8 EAS Waveform # **SOT23-3S PACKAGE INFORMATION** | Cymahal | Dimensions In | | Dimensio | ns In Inches | |------------|---------------|------------|----------|--------------| | Symbol | Min | Max | Min | Max | | Α | 0.900 | 1.000 | 0.03 | 0.039 | | A 1 | 0.000 | 0.100 | 0.00 | 0.004 | | b | 0.300 | 0.500 | 0.012 | 0.020 | | С | 0.090 | 0.110 | 0.003 | 0.004 | | D | 2.800 | 3.000 | 0.110 | 0.118 | | Е | 1.200 | 1.400 | 0.047 | 0.055 | | E1 | 2.250 | 2.550 | 0.089 | 0.100 | | е | 0.950 | 0.950 TYP. | | TYP. | | е | 1.800 | 2.000 | 0.071 | 0.079 | | L | 0.550 | REF. | 0.022 | REF. | | L1 | 0.300 | 0.500 | 0.012 | 0.020 | | θ | 1° | 7° | 1° | 7° |